Аминокислоты – важные органические вещества, в структуре которых находятся карбоксильная и аминная группы. Комплексное исследование, определяющее содержание аминокислот и их производных в крови позволяет выявить врожденные и приобретенные нарушения аминокислотного обмена.
Венозная кровь
до 8 суток
Венозную кровь.
Аминокислоты – органические вещества, содержащие карбоксильные и аминные группы. Известно около 100 аминокислот, но в синтезе белка участвуют только 20. Данные аминокислоты называются «протеиногенными» (стандартными) и по возможности синтеза в организме классифицируются на заменимые и незаменимые. К незаменимым аминокислотам относятся аргинин, валин, гистидин, изолейцин, лейцин, лизин, метионин, треонин, триптофан, фенилаланин. Заменимыми аминокислотами являются аланин, аспарагин, аспартат, глицин, глутамат, глутамин, пролин, серин, тирозин, цистеин. Протеиногенные и нестандартные аминокислоты, их метаболиты участвуют в различных обменных процессах в организме. Дефект ферментов на различных этапах трансформации веществ может приводить к накоплению аминокислот и их продуктов превращения, оказывать отрицательное влияние на состояние организма.
Нарушения метаболизма аминокислот могут быть первичными (врожденными) или вторичными (приобретенными). Первичные аминоацидопатии обычно наследуются аутосомно-рецессивно или сцеплено с Х-хромосомой и проявляются в раннем детском возрасте. Заболевания развиваются вследствие генетически обусловленного дефицита ферментов и/или транспортных белков, связанных с метаболизмом определенных аминокислот. В литературе описано более 30 вариантов аминоацидопатий. Клинические проявления могут варьироваться от легких доброкачественных нарушений до тяжелого метаболического ацидоза или алкалоза, рвоты, задержки умственного развития и роста, летаргии, комы, синдрома внезапной смерти новорожденных, остеомаляции и остеопороза. Вторичные нарушения обмена аминокислот могут быть связаны с заболеваниями печени, желудочно-кишечного тракта (например, язвенный колит, болезнь Крона), почек (например, синдром Фанкони), недостаточным или неадекватным питанием, новообразованиями. Ранняя диагностика и своевременное лечение позволяют предупредить развитие и прогрессирование симптомов заболевания.
Данное исследование позволяет комплексно определить концентрацию в крови стандартных и непротеиногенных аминокислот, их производных и оценить состояние аминокислотного обмена.
Аланин (ALA) способен синтезироваться в организме человека из других аминокислот. Он участвует в процессе глюконеогенеза в печени. По некоторым данным, повышенное содержание аланина в крови ассоциировано с повышением артериального давления, холестерина, индекса массы тела, АЛТ.
Аргинин (ARG) в зависимости от возраста и функционального состояния организма относится к полузаменимым аминокислотам. В связи с незрелостью ферментных систем недоношенные дети не способны к его образованию, поэтому нуждаются во внешнем источнике поступления данного вещества. Повышение потребности в аргинине возникает при стрессе, оперативном лечении, травмах. Данная аминокислота участвует в делении клеток, заживлении ран, высвобождении гормонов, образовании окиси азота и мочевины.
Аспарагиновая кислота (ASP) может образовываться из цитруллина и орнитина и являться предшественником некоторых других аминокислот. Аспарагиновая кислота и аспарагин (ASN) участвуют в глюконеогенезе, синтезе пуриновых основ, азотистом обмене, функции АТФ-синтетазы. В нервной системе аспарагин играет роль нейротрансмиттера.
Цитруллин (CIT) может образовываться из орнитина или аргинина и является важным компонентом цикла образования мочевины в печени (орнитинового цикла). Цитруллин входит в состав филаггрина, гистонов и играет роль в аутоиммунном воспалении при ревматоидном артрите.
Глутаминовая кислота (GLU) – заменимая аминокислота, которая имеет большое значение в азотистом обмене. Свободная глутаминовая кислота используется в пищевой промышленности в качестве усилителя вкуса. Глутаминовая кислота и глутамат являются важными возбуждающими нейротрансмиттерами в нервной системе. Снижение высвобождения глутамата отмечается при классической фенилкетонурии.
Глицин (GLY) является заменимой аминокислотой, которая может образовываться из серина под действием пиридоксина (витамина В6). Он принимает участие в синтезе белков, порфиринов, пуринов и является тормозным медиатором в центральной нервной системе.
Метионин (MET) – незаменимая аминокислота, максимальное содержание которой определяется в яйцах, кунжуте, злаках, мясе, рыбе. Из него может образовываться гомоцистеин. Дефицит метионина приводит к развитию стеатогепатита, анемии.
Орнитин (ORN) не кодируется человеческим ДНК и не включается в синтез белка. Данная аминокислота образуется из аргинина и играет ключевую роль в синтезе мочевины и выведении аммиака из организма. Содержащие орнитин препараты применяются для лечения цирроза, астенического синдрома.
Фенилаланин (PHE) – незаменимая аминокислота, которая является предшественником тирозина, катехоламинов, меланина. Генетический дефект метаболизма фенилаланина приводит к накоплению аминокислоты и ее токсических продуктов и развитию аминоацидопатии – фенилкетонурии. Заболевание ассоциировано с нарушениями умственного и физического развития, судорогами.
Тирозин (TYR) поступает в организм с пищей или синтезируется из фенилаланина. Является предшественником нейротрансмиттеров (дофамина, норадреналина, адреналина) и пигмента меланина. При генетических нарушениях метаболизма тирозина возникает тирозинемия, которая сопровождается повреждением печени, почек и периферической нейропатией. Важное дифференциально диагностическое значение имеет отсутствие повышения уровня тирозина в крови при фенилкетонурии, в отличие от некоторых других патологических состояний.
Валин (VAL), лейцин (LEU) и изолейцин (ILEU) – незаменимые аминокислоты, которые являются важными источниками энергии в мышечных клетках. При ферментопатиях, которые нарушают их метаболизм и приводят к накоплению данных аминокислот (особенно лейцина), возникает «болезнь кленового сиропа» (лейциноз). Патогномоничным признаком данного заболевания служит сладкий запах мочи, который напоминает кленовый сироп. Симптомы аминоацидопатии возникают с раннего возраста и включают рвоту, обезвоживание, летаргию, гипотонию, гипогликемию, судороги и опистотонус, кетоацидоз и патологию центральной нервной системы. Заболевание нередко заканчивается летально.
Гидроксипролин (HPRO) образовывается при гидроксилировании пролина под воздействием витамина С. Данная аминокислота обеспечивает стабильность коллагена и является главной его составляющей. При дефиците витамина С нарушается синтез гидроксипролина, снижается стабильность коллагена и возникает повреждение слизистых оболочек – симптомы цинги.
Серин (SER) входит в состав практически всех белков и участвует в формировании активных центров многих ферментов организма (например, трипсина, эстераз) и синтезе других заменимых аминоксилот.
Глутамин (GLN) является частично заменимой аминокислотой. Потребность в нем значительно возрастает при травмах, некоторых желудочно-кишечных заболеваниях, интенсивных физических нагрузках. Он принимает участие в азотистом обмене, синтезе пуринов, регуляции кислотно-щелочного баланса, выполняет нейромедиаторную функцию. Данная аминокислота ускоряет процессы заживления и восстановления после травм и операций.
Гамма-аминомасляная кислота (GABA) синтезируется из глутамина и является важнейшим тормозным нейромедиатором. Препараты ГАМК используются для лечения различных неврологических нарушений.
Бета-аминоизомасляная кислота (BAIBA) является продуктом метаболизма тимина и валина. Повышение ее уровня в крови наблюдается при дефиците бета-аминоизобутират-пируват-аминотрансферазы, голодании, отравлении свинцом, лучевой болезни и некоторых новообразованиях.
Альфа-аминомасляная кислота (AABA) – предшественник синтеза офтальмовой кислоты, являющейся аналогом глутатиона в хрусталике глаза.
Бета-аланин (BALA), в отличие от альфа-аланина, не участвует в синтезе белков в организме. Данная аминокислота входит в состав карнозина, который в качестве буферной системы препятствует накоплению кислот в мышцах во время физических нагрузок, уменьшает мышечную боль после тренировок, ускоряет процессы восстановления после травм.
Гистидин (HIS) – незаменимая аминокислота, которая является предшественником гистамина, входит в состав активных центров многих ферментов, содержится в гемоглобине, способствует восстановлению тканей. При редком генетическом дефекте гистидазы возникает гистидинемия, которая может проявиться гиперактивностью, задержкой развития, трудностями при обучении и в некоторых случаях умственной отсталостью.
Треонин (THRE) – эссенциальная аминокислота, необходимая для синтеза белка и образования других аминокислот.
1-метилгистидин (1MHIS) является производным ансерина. Концентрация 1-метилгистидина в крови и моче коррелирует с употреблением мясной пищи и возрастает при дефиците витамина Е. Повышение уровня данного метаболита возникает при дефиците карозиназы в крови и наблюдается при болезни Паркинсона, рассеянном склерозе.
3-метилгистидин (3MHIS) является продуктом метаболизма актина и миозина и отражает уровень распада белков в мышечной ткани.
Пролин (PRO) синтезируется в организме из глутамата. Гиперпролинемия вследствие генетического дефекта ферментов или на фоне неадекватного питания, повышенного содержания молочной кислоты в крови, заболеваний печени может приводить к судорогам, умственной усталости и другой неврологической патологии.
Лизин (LYS) – эссенциальная аминокислота, которая участвует в формировании коллагена и восстановлении тканей, функции иммунной системы, синтезе белков, ферментов и гормонов. Недостаточность глицина в организме приводит к астении, снижении памяти и нарушению репродуктивных функций.
Альфа-аминоадипиновая кислота (AAA) – промежуточный продукт метаболизма лизина.
Цистеин (CYS) является незаменимой аминокислотой для детей, пожилых и людей с нарушением всасывания питательных веществ. У здоровых людей данная аминокислота синтезируется из метионина. Цистеин входит в состав кератинов волос, ногтей, участвует в формировании коллагена, является антиоксидантом, предшественником глутатиона и защищает печень от повреждающего действия метаболитов алкоголя. Цистин является димерной молекулой цистеина. При генетическом дефекте транспорта цистина в почечных канальцах и стенках кишечника возникает цистинурия, которая приводит к формированию камней в почках, мочеточниках и мочевом пузыре.
Цистатионин (CYST) – промежуточный продукт обмена цистеина при его синтезе из гомоцистеина. При наследственном дефиците фермента цистатионазы или приобретенном гиповитаминозе В6 уровень цистатионина в крови и моче повышается. Данное состояние описывается как цистатионинурия, которая протекает доброкачественно без явных патологических признаков, однако в редких случаях может проявляться дефицитом интеллекта.
Цистеиновая кислота (CYSA) образовывается при окислении цистеина и является предшественником таурина.
Таурин (TAU) синтезируется из цистеина и, в отличие от аминокислот, является сульфокислотой, содержащей сульфогруппу вместо карбоксильной группы. Таурин входит в состав желчи, участвует в эмульгации жиров, является тормозным нейромедиатором, улучшает репаративные и энергетические процессы, обладает кардиотоническими и гипотензивными свойствами.
В спортивном питании аминокислоты и протеины нашли широкое распространение и используются для увеличения мышечной массы. У вегетарианцев же в связи с отсутствием в рационе животного белка может возникнуть дефицит некоторых незаменимых аминокислот. Данное исследование позволяет оценить адекватность таких видов питания и при необходимости провести их коррекцию.
Интерпретация результатов осуществляется с учетом возраста, особенностей питания, клинического состояния и других лабораторных данных.
Увеличение общего уровня аминокислот в крови возможно при:
Снижение общего уровня аминокислот в крови может возникнуть при:
Первичные аминоацидопатии
Вторичные аминоацидопатии
Для исключения врожденных нарушений метаболизма аминокислот исследование рекомендовано проводить в первые дни и недели жизни ребенка. Раннее назначение лечебных мероприятий, специальной диеты позволяет в большинстве случаев предупредить развитие и прогрессирование заболевания.
Неонатолог, педиатр, терапевт, невролог, медицинский генетик, диетолог.
Тип |
На дому |
В Центре |
Самостоятельно |
Венозная кровь |
да |
да |
На дому: возможно взятие биоматериала сотрудником мобильной службы.
В Диагностическом центре: взятие, либо самостоятельный сбор биоматериала осуществляется в Диагностическом центре.
Самостоятельно: сбор биоматериала осуществляется самим пациентом (моча, кал, мокрота и т.п.). Другой вариант – образцы биоматериала предоставляет пациенту врач (например, операционный материал, ликвор, биоптаты и т.п.). После получения образцов пациент может как самостоятельно доставить их в Диагностический центр, так и вызвать мобильную службу на дом для передачи их в лабораторию.
«Лека-Фарм» в Приморском районе
«Лека-Фарм» в Курортном районе